definma-ui/src/app/prediction/prediction.component.ts

132 lines
4.5 KiB
TypeScript

import { Component, OnInit } from '@angular/core';
import { ChartOptions } from 'chart.js';
import { ApiService } from '../services/api.service';
import { animate, style, transition, trigger } from '@angular/animations';
import cloneDeep from 'lodash/cloneDeep';
import omit from 'lodash/omit';
import { DataService } from '../services/data.service';
import { ModelItemModel } from '../models/model-item.model';
import * as FileSaver from 'file-saver'
@Component({
selector: 'app-prediction',
templateUrl: './prediction.component.html',
styleUrls: ['./prediction.component.scss'],
animations: [
trigger(
'inOut', [
transition(':enter', [
style({height: 0, opacity: 0}),
animate('0.5s ease-out', style({height: '*', opacity: 1}))
]),
transition(':leave', [
style({height: '*', opacity: 1}),
animate('0.5s ease-in', style({height: 0, opacity: 0}))
])
]
)
]
})
export class PredictionComponent implements OnInit {
result: { predictions: any[], mean: any[] }; // prediction result from python container
loading = false;
activeGroup: ModelItemModel = new ModelItemModel();
activeModelIndex = 0;
// if true, spectra belong to different samples, otherwise multiple spectra from the same sample are given
multipleSamples = false;
spectrumNames: string[] = [];
spectrum: string[][] = [[]];
flattenedSpectra = [];
chart = [];
readonly chartInit = {
data: [],
label: 'Spectrum',
showLine: true,
fill: false,
pointRadius: 0,
borderColor: '#00a8b0',
borderWidth: 2
};
readonly chartOptions: ChartOptions = {
scales: {
xAxes: [{ticks: {min: 400, max: 4000, stepSize: 400, reverse: true}}],
yAxes: [{ticks: {}}]
},
responsive: true,
tooltips: {enabled: false},
hover: {mode: null},
maintainAspectRatio: true,
plugins: {datalabels: {display: false}}
};
constructor(
private api: ApiService,
public d: DataService
) {
this.chart[0] = cloneDeep(this.chartInit);
}
ngOnInit(): void {
this.d.load('modelGroups', () => {
this.activeGroup = this.d.arr.modelGroups[0];
});
}
fileToArray(files) {
this.loading = true;
this.flattenedSpectra = [];
this.chart = [];
let load = files.length;
this.spectrumNames = files.map(e => e.name);
for (const i in files) {
if (files.hasOwnProperty(i)) {
const fileReader = new FileReader();
fileReader.onload = () => {
// parse to database spectrum representation
this.spectrum = fileReader.result.toString().split('\r\n').map(e => e.split(',').map(el => parseFloat(el)))
.filter(el => el.length === 2) as any;
// flatten to format needed for prediction
this.flattenedSpectra[i] = {labels: this.spectrum.map(e => e[0]), values: this.spectrum.map(e => e[1])};
// add to chart
this.chart[i] = cloneDeep(this.chartInit);
this.chart[i].data = this.spectrum.map(e => ({x: parseFloat(e[0]), y: parseFloat(e[1])}));
load --;
if (load <= 0) { // all loaded
this.loadPrediction();
}
};
fileReader.readAsText(files[i]);
}
}
}
loadPrediction() {
this.loading = true;
this.api.post<any>(this.activeGroup.models[this.activeModelIndex].url, this.flattenedSpectra, data => {
let tmp = Object.entries(omit(data, ['mean', 'std', 'label'])) // form: [[label, [{value, color}]]]
.map((entry: any) => entry[1].map(e => ({category: entry[0], label: data.label[entry[0]], value: e.value, color: e.color}))); // form: [[{category, label, value, color}]]
this.result = {
predictions: tmp[0].map((ignore, columnIndex) => tmp.map(row => row[columnIndex])), // transpose tmp
mean: Object.entries(data.mean)
.map((entry:any) => ({category: entry[0], label: data.label[entry[0]], value: entry[1].value, color: entry[1].color, std: data.std[entry[0]]})) // form: [{category, label, value, color}]
};
this.loading = false;
});
}
groupChange(index) { // group was changed
this.activeGroup = this.d.arr.modelGroups[index];
this.activeModelIndex = 0;
this.result = undefined;
}
exportCSV() {
const zip = (a, b) => a.map((k, i) => [k, b[i]]);
const predictions = zip(this.spectrumNames, this.result.predictions.map(p => p[0].value));
const csv = predictions.map(line => line.join(";")).join("\n");
FileSaver.saveAs(new Blob([csv], { type: 'text/csv;charset=utf-8' }), "predictions.csv");
}
}