33 Commits

Author SHA1 Message Date
52719d22d4 Merge pull request 'Transparently Propagate Event Handler Errors' (#14) from b/error-passthrough into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/14
Reviewed-by: delvh <leon@kske.dev>
Reviewed-by: DieGurke <maxi@kske.dev>
2021-03-16 08:17:41 +01:00
122106bf39 Transparently propagate event handler errors
When an exception occurs during the execution of an event handler, it is
caught, wrapped inside an exception event and dispatched on the event
bus.

This applies to any throwable, but is not very useful for errors, as
these are not normally caught. Assertion errors in particular, which are
used in unit tests, should not be caught, as this would cause the test
runner to miss a failed test.

Therefore, errors are now transparently passed through to the caller of
the dispatch method.
2021-03-15 08:29:15 +01:00
d9ddc0e1a9 Merge pull request 'Add ExceptionEvent' (#12) from f/exception-event into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/12
Reviewed-by: delvh <leon@kske.dev>
Reviewed-by: DieGurke <maxi@kske.dev>
2021-02-21 14:04:26 +01:00
7c3cd017de Add system events section to README 2021-02-21 13:50:12 +01:00
6a2cad4ae5 Add ExceptionEvent
An exception event wraps an event that caused an exception inside of an
event handler while being dispatched and is then dispatched to dedicated
handlers.
2021-02-21 10:36:06 +01:00
0f9b64be48 Merge pull request 'Add DeadEvent' (#9) from f/dead-event into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/9
Reviewed-by: delvh <leon@kske.dev>
Reviewed-by: DieGurke <maxi@kske.dev>
2021-02-21 09:16:32 +01:00
b2fe3a9d6c Log unhandled dead events 2021-02-20 22:10:48 +01:00
9379e6bb94 Merge pull request 'Additional Warnings in Event Bus Proc' (#8) from f/additional-warnings into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/8
Reviewed-by: delvh <leon@kske.dev>
2021-02-20 21:46:08 +01:00
0036dc4829 Add DeadEvent
A dead events wraps an event that was dispatched but not delivered to
any handler. The dead event is than dispatched to dedicated handlers.
2021-02-19 16:05:11 +01:00
8a30493c52 Warn about unused event handler return values
If an event handler has a non-void return type, a warning is issued as
the event bus cannot use the returned value.

In rare cases this might be justified as the event handler could be
invoked directly.
2021-02-19 11:34:58 +01:00
b56f08e441 Warn about unnecessarily polymorphic event handlers
When Event Bus Proc detects a handler for a final type that uses the
@Polymorphic annotation, it issues a warning.
2021-02-19 11:30:09 +01:00
4a5b94a9b7 Allow event handlers with non-void return type
Also removed unnecessary files from the Event Bus Proc JAR and
configured GPG signing as well as deployment to Sonatype OSSRH.
2021-02-19 11:14:43 +01:00
ff35e7f37d Fix several edge cases in EventProcessor
When encountering an event handler with an invalid signature, the
processor doesn't crash anymore. Also, event parameters that aren't
objects are now reported as errors.
2021-02-17 08:22:48 +01:00
1dd9e05c38 Rename event-bus-ap to event-bus-proc 2021-02-15 21:02:34 +01:00
39c51c8953 Merge pull request 'Split @Event Parameters Into @Polymorphic and @Property, Remove Marker Interfaces' (#5) from f/new-annotations into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/5
Reviewed-by: delvh <leon@kske.dev>
2021-02-15 20:38:18 +01:00
002180ed3b Remove EventListener and IEvent marker interfaces
This allows Event Bus to interface with existing classes without
modification.
2021-02-15 20:36:09 +01:00
603fe80df6 Merge pull request 'Restructure Project, Add Annotation Processor' (#4) from f/annotation-processor into develop
Reviewed-on: https://git.kske.dev/kske/event-bus/pulls/4
Reviewed-by: delvh <leon@kske.dev>
2021-02-15 13:42:27 +01:00
cd2e7ad023 Rename Event#eventType to Event#value for more concise usage 2021-02-15 13:42:20 +01:00
9b1c708514 Replace priority with @Priority
The new @Priority annotation serves the exact same purpose as
@Event(priority = ...), but should be easier to read in complex handler
declarations. It has to be used in conjunction with the @Event
annotation, not instead of it.
2021-02-15 12:06:33 +01:00
3a6ebe9a19 Replace includeSubtypes with @Polymorphic
The new @Polymorphic annotation serves the exact same purpose as
@Event(includeSubtypes = true), but should be easier to read in complex
handler declarations. It has to be used in conjunction with the @Event
annotation, not instead of it.
2021-02-15 10:55:30 +01:00
e040f6ab1b Simplify binding access calls in EventBus 2021-02-15 09:25:16 +01:00
ebc11555f6 Fix developer connection string in POM 2021-02-15 08:26:07 +01:00
955e2d82b4 Add Event Bus AP section to README
Additionally bump version to 1.0.0 and adjust package names.
2021-02-14 21:48:24 +01:00
ab01845178 Refactor EventProcessor for improved readability 2021-02-14 21:29:06 +01:00
023acb9172 Add simple annotation processor, generate shaded processor JAR 2021-02-14 14:34:19 +01:00
fd255d65cc Rename event-bus module to event-bus-core, add event-bus-ap module
event-bus is now a parent project containing the two modules
event-bus-core (the previous event-bus) and event-bus-ap (annotation
processor).

The version of the parent project (and thus that of the modules) has
been bumped to 1.0.0, as this change breaks compatibility with previous
versions due to the different artifact, module and package names.
2021-02-09 09:52:26 +01:00
9701e862df Add parent project, convert existing project to Maven module 2021-02-08 19:30:37 +01:00
dcc578076a Move project to subdirectory, adjust .gitignore 2021-02-08 18:49:37 +01:00
883efed342 Update license in POM 2021-02-06 14:05:48 +01:00
273531e352 Link the Maven repository in README 2021-01-08 09:45:07 +01:00
8b1e3a8c4a Rewrite a paragraph in README 2021-01-03 17:00:20 +01:00
d098b83d85 Change license to GPL-3.0 2021-01-03 15:29:36 +01:00
cc266ca408 Add CODE_OF_CONDUCT 2020-12-14 11:57:55 +01:00
38 changed files with 1688 additions and 387 deletions

10
.gitignore vendored
View File

@ -1,2 +1,8 @@
/target/
/.settings/
# Maven build directories
target/
# Dependency reduced POM from Maven Shade Plugin
dependency-reduced-pom.xml
# Eclipse settings directories
.settings/

View File

@ -5,11 +5,6 @@
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.m2e.core.maven2Builder</name>
<arguments>
@ -17,7 +12,6 @@
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>org.eclipse.m2e.core.maven2Nature</nature>
</natures>
</projectDescription>

5
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,5 @@
# Contributor Code of Conduct
This project adheres to No Code of Conduct. We are all adults. We accept anyone's contributions. Nothing else matters.
For more information please visit the [No Code of Conduct](https://nocodeofconduct.com) homepage.

687
LICENSE
View File

@ -1,19 +1,674 @@
MIT License Copyright (c) 2020 Kai S. K. Engelbart
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
Preamble
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

162
README.md
View File

@ -3,34 +3,31 @@
## Introduction
This library allows passing events between different objects without them having a direct reference to each other.
Any class can be made an event by implementing the `IEvent` interface.
Any object can serve as an event.
Using an instance of the `EventBus` class, an instant of the event class can be dispatched.
Using an instance of the `EventBus` class, an instance of the event class can be dispatched.
This means that it will be forwarded to all listeners registered for it at the event bus.
In addition, a singleton instance of the event bus is provided by the `EventBus#getInstance()` method.
To listen to events, register event handling methods using the `Event` annotation.
For this to work, the method must have a return type of `void` and declare a single parameter of the desired event type.
For this to work, the method must declare a single parameter of the desired event type.
Alternatively, a parameter-less event handler can be declared as shown [below](#parameter-less-event-handlers).
Additionally, the class containing the method must implement the `EventListener` interface.
## A Simple Example
Lets look at a simple example: we declare the empty class `SimpleEvent` that implements `IEvent` and can thus be used as an event.
Lets look at a simple example: we declare the empty class `SimpleEvent` whose objects can be used as events.
```java
import dev.kske.eventbus.IEvent;
public class SimpleEvent implements IEvent {}
public class SimpleEvent {}
```
Next, an event listener for the `SimpleEvent` is declared:
```java
import dev.kske.eventbus.*;
import dev.kske.eventbus.core.*;
public class SimpleEventListener implements EventListener {
public class SimpleEventListener {
public SimpleEventListener() {
@ -54,94 +51,161 @@ In a more sophisticated example the class would acquire an external event bus th
Note that creating static event handlers like this
```java
@Event
private static void onSimpleEvent(SimpleEvent event) ...
@Event
private static void onSimpleEvent(SimpleEvent event) { ... }
```
is technically possible, however you would still have to create an instance of the event listener to register it at an event bus.
## Event handlers for subtypes
## Polymorphic Event Handlers
On certain occasions its practical for an event handler to accept both events of the specified type, as well as subclasses of that event.
To include subtypes for an event handler, use the `includeSubtypes` parameter as follows:
On certain occasions it's practical for an event handler to accept both events of the specified type, as well as subclasses of that event.
To include subtypes for an event handler, use the `@Polymorphic` annotation in addition to `@Event`:
```java
@Event(includeSubtypes = true)
@Event
@Polymorphic
private void onSimpleEvent(SimpleEvent event) { ... }
```
## Event handler execution order
## Event Handler Execution Order
Sometimes when using multiple handlers for one event, it might be useful to know in which order they will be executed.
Event Bus provides a mechanism to ensure the correct propagation of events: the `priority`.
Sometimes when using multiple handlers for one event, it might be useful to define in which order they will be executed.
Event Bus assigns a priority to every handler, which is `100` by default, but can be explicitly set using the `@Priority` annotation in addition to `@Event`:
Priority can be set on the `@Event` annotation like that:
```java
@Event(priority=100)
@Event
@Priority(250)
private void onSimpleEvent(SimpleEvent event) { ... }
```
The default priority for events is `100`.
**Important:**
Events are dispatched top-down, meaning the event handler with the highest priority will be executed first.
Events are dispatched to handlers in descending order of their priority.
The execution order is undefined for handlers with the same priority.
If no priority is set or multiple handlers have the same priority, the order of execution is undefined.
## Parameter-less event handlers
## Parameter-Less Event Handlers
In some cases an event handler is not interested in the dispatched event instance.
To avoid declaring a useless parameter just to specify the event type of the handler, there is an alternative:
```java
@Event(eventType = SimpleEvent.class)
@Event(SimpleEvent.class)
private void onSimpleEvent() {
System.out.println("SimpleEvent received!");
}
```
Make sure that you **do not** declare both a parameter and the `eventType` value of the annotation, as this would be ambiguous.
Make sure that you **do not** both declare a parameter and specify the event type in the annotation, as this would be ambiguous.
## Event consumption
## Event Consumption
There are cases when it would be useful to stop event propagation after a certain condition has been fulfilled.
Event Bus provides a mechanism to consume events:
In some cases it might be useful to stop the propagation of an event.
Event Bus makes this possible with event consumption:
```java
@Event(eventType = SimpleEvent.class, priority=1000)
@Event(SimpleEvent.class)
@Priority(100)
private void onSimpleEvent() {
EventBus.getInstance().cancel();
}
@Event(eventType = SimpleEvent.class, priority=900)
@Event(SimpleEvent.class)
@Priority(50)
private void onSimpleEvent2() {
System.out.println("Will not be printed!");
}
```
In this example, the second method will not be executed as the event will no longer be forwarded.
Any event handler with a lower priority than the one canceling it will not get executed.
In this example, the second method will not be executed as it has a lower priority and the event will not be propagated after consumption.
This applies to all event handlers that would have been executed after the one consuming the event.
**Important:**
Please avoid cancelling events when (multiple) event handlers have the same priority as the one cancelling it:
It is undefined whether those will be executed or not.
Avoid cancelling events while using multiple event handlers with the same priority.
As event handlers are ordered by priority, it is not defined which of them will be executed after the event has been consumed.
## System Events
To accommodate for special circumstances in an event distribution, system events have been introduced.
At the moment, there are two system events, which are explained in this section.
### Detecting Unhandled Events
When an event is dispatched but not delivered to any handler, a dead event is dispatched that wraps the original event.
You can declare a dead event handler to respond to this situation:
```java
private void onDeadEvent(DeadEvent deadEvent) { ... }
```
### Detecting Exceptions Thrown by Event Handlers
When an event handler throws an exception, an exception event is dispatched that wraps the original event.
A exception handler is declared as follows:
```java
private void onExceptionEvent(ExceptionEvent ExceptionEvent) { ... }
```
Both system events reference the event bus that caused them and a warning is logged if they are unhandled.
### What About Endless Recursion Caused By Dead Events and Exception Events?
As one might imagine, an unhandled dead event would theoretically lead to an endless recursion.
The same applies when an exception event handler throws an exception.
To avoid this, system events never cause system events and instead just issue a warning to the logger.
## Installation
Event Bus is currently hosted at [kske.dev](https://kske.dev).
To include it inside your project, just add the Maven repository and the dependency to your `pom.xml`:
Event Bus is available in Maven Central.
To include it inside your project, just add the following dependency to your `pom.xml`:
```xml
<repositories>
<repository>
<id>kske-repo</id>
<url>https://kske.dev/maven-repo</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>dev.kske</groupId>
<artifactId>event-bus</artifactId>
<version>0.1.0</version>
<artifactId>event-bus-core</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
```
Then, require the Event Bus Core module in your `module-info.java`:
```java
requires dev.kske.eventbus.core;
```
If you intend to use event handlers that are inaccessible to Event Bus by means of Java language access control, make sure to allow reflective access from your module:
```java
opens my.module to dev.kske.eventbus.core;
```
## Compile-Time Error Checking with Event Bus Proc
To assist you with writing event listeners, the Event Bus Proc (Annotation Processor) module enforces correct usage of the `@Event` annotation during compile time.
This reduces difficult-to-debug bugs that occur during runtime to compile-time errors which can be easily fixed.
The event annotation processor detects invalid event handlers and event type issues with more to come in future versions.
When using Maven, it can be registered using the Maven Compiler Plugin:
```xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<annotationProcessorPaths>
<annotationProcessorPath>
<groupId>dev.kske</groupId>
<artifactId>event-bus-proc</artifactId>
<version>1.0.0</version>
</annotationProcessorPath>
</annotationProcessorPaths>
</configuration>
</plugin>
```
Alternatively, a JAR file containing the processor is offered with each release for the use within IDEs and environments without Maven support.

23
event-bus-core/.project Normal file
View File

@ -0,0 +1,23 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>event-bus-core</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.m2e.core.maven2Builder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>org.eclipse.m2e.core.maven2Nature</nature>
</natures>
</projectDescription>

30
event-bus-core/pom.xml Normal file
View File

@ -0,0 +1,30 @@
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>event-bus-core</artifactId>
<name>Event Bus Core</name>
<parent>
<groupId>dev.kske</groupId>
<artifactId>event-bus</artifactId>
<version>1.0.0</version>
</parent>
<dependencies>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.6.2</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<!-- Disable resource folder -->
<resources />
</build>
</project>

View File

@ -0,0 +1,37 @@
package dev.kske.eventbus.core;
/**
* Wraps an event that was dispatched but for which no handler has been bound.
* <p>
* Handling dead events is useful as it can identify a poorly configured event distribution.
*
* @author Kai S. K. Engelbart
* @since 1.1.0
*/
public final class DeadEvent {
private final EventBus eventBus;
private final Object event;
DeadEvent(EventBus eventBus, Object event) {
this.eventBus = eventBus;
this.event = event;
}
@Override
public String toString() {
return String.format("DeadEvent[eventBus=%s, event=%s]", eventBus, event);
}
/**
* @return the event bus that dispatched this event
* @since 1.1.0
*/
public EventBus getEventBus() { return eventBus; }
/**
* @return the event that could not be delivered
* @since 1.1.0
*/
public Object getEvent() { return event; }
}

View File

@ -0,0 +1,42 @@
package dev.kske.eventbus.core;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.*;
/**
* Indicates that a method is an event handler.
* <p>
* To be successfully used as such, the method has to specify the event type by either declaring one
* parameter of that type or setting the annotation value to the corresponding class.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see Polymorphic
* @see Priority
*/
@Documented
@Retention(RUNTIME)
@Target(METHOD)
public @interface Event {
/**
* Defines the event type the handler listens to. If this value is set, the handler is not
* allowed to declare parameters.
* <p>
* This is useful when the event handler does not utilize the event instance.
*
* @return the event type accepted by the handler
* @since 1.0.0
*/
Class<?> value() default USE_PARAMETER.class;
/**
* Signifies that the event type the handler listens to is determined by the type of its only
* parameter.
*
* @since 0.0.3
*/
static final class USE_PARAMETER {}
}

View File

@ -1,7 +1,8 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
import java.lang.System.Logger;
import java.lang.System.Logger.Level;
import java.lang.reflect.InvocationTargetException;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
@ -51,20 +52,22 @@ public final class EventBus {
return instance;
}
private final Map<Class<? extends IEvent>, TreeSet<EventHandler>> bindings
= new ConcurrentHashMap<>();
private final Set<EventListener> registeredListeners = ConcurrentHashMap.newKeySet();
private final ThreadLocal<DispatchState> dispatchState
= ThreadLocal.withInitial(DispatchState::new);
private final Map<Class<?>, TreeSet<EventHandler>> bindings =
new ConcurrentHashMap<>();
private final Set<Object> registeredListeners =
ConcurrentHashMap.newKeySet();
private final ThreadLocal<DispatchState> dispatchState =
ThreadLocal.withInitial(DispatchState::new);
/**
* Dispatches an event to all event handlers registered for it in descending order of their
* priority.
*
* @param event the event to dispatch
* @throws EventBusException if an event handler isn't accessible or has an invalid signature
* @since 0.0.1
*/
public void dispatch(IEvent event) {
public void dispatch(Object event) throws EventBusException {
Objects.requireNonNull(event);
logger.log(Level.INFO, "Dispatching event {0}", event);
@ -72,13 +75,39 @@ public final class EventBus {
var state = dispatchState.get();
state.isDispatching = true;
for (var handler : getHandlersFor(event.getClass()))
Iterator<EventHandler> handlers = getHandlersFor(event.getClass());
if (handlers.hasNext()) {
while (handlers.hasNext())
if (state.isCancelled) {
logger.log(Level.INFO, "Cancelled dispatching event {0}", event);
state.isCancelled = false;
break;
} else {
handler.execute(event);
try {
handlers.next().execute(event);
} catch (InvocationTargetException e) {
if (event instanceof DeadEvent || event instanceof ExceptionEvent)
// Warn about system event not being handled
logger.log(Level.WARNING, event + " not handled due to exception", e);
else if (e.getCause() instanceof Error)
// Transparently pass error to the caller
throw (Error) e.getCause();
else
// Dispatch exception event
dispatch(new ExceptionEvent(this, event, e.getCause()));
}
}
} else if (event instanceof DeadEvent || event instanceof ExceptionEvent) {
// Warn about the dead event not being handled
logger.log(Level.WARNING, "{0} not handled", event);
} else {
// Dispatch dead event
dispatch(new DeadEvent(this, event));
}
// Reset dispatch state
@ -88,27 +117,26 @@ public final class EventBus {
}
/**
* Searches for the event handlers bound to an event class.
* Searches for the event handlers bound to an event class. This includes polymorphic handlers
* that are bound to a supertype of the event class.
*
* @param eventClass the event class to use for the search
* @return all event handlers registered for the event class
* @return an iterator over the applicable handlers in descending order of priority
* @since 0.0.1
*/
private List<EventHandler> getHandlersFor(Class<? extends IEvent> eventClass) {
private Iterator<EventHandler> getHandlersFor(Class<?> eventClass) {
// Get handlers defined for the event class
Set<EventHandler> handlers
= bindings.containsKey(eventClass) ? bindings.get(eventClass)
: new TreeSet<>();
TreeSet<EventHandler> handlers = bindings.getOrDefault(eventClass, new TreeSet<>());
// Get subtype handlers
// Get polymorphic handlers
for (var binding : bindings.entrySet())
if (binding.getKey().isAssignableFrom(eventClass))
for (var handler : binding.getValue())
if (handler.includeSubtypes())
if (handler.isPolymorphic())
handlers.add(handler);
return new ArrayList<>(handlers);
return handlers.iterator();
}
/**
@ -134,7 +162,7 @@ public final class EventBus {
* @since 0.0.1
* @see Event
*/
public void registerListener(EventListener listener) throws EventBusException {
public void registerListener(Object listener) throws EventBusException {
Objects.requireNonNull(listener);
if (registeredListeners.contains(listener))
throw new EventBusException(listener + " already registered!");
@ -151,20 +179,18 @@ public final class EventBus {
// Initialize and bind the handler
var handler = new EventHandler(listener, method, annotation);
if (!bindings.containsKey(handler.getEventType()))
bindings.put(handler.getEventType(), new TreeSet<>());
bindings.putIfAbsent(handler.getEventType(), new TreeSet<>());
logger.log(Level.DEBUG, "Binding event handler {0}", handler);
bindings.get(handler.getEventType())
.add(handler);
handlerBound = true;
}
if(!handlerBound)
if (!handlerBound)
logger.log(
Level.WARNING,
"No event handlers bound for event listener {0}",
listener.getClass().getName()
);
listener.getClass().getName());
}
/**
@ -173,7 +199,7 @@ public final class EventBus {
* @param listener the listener to remove
* @since 0.0.1
*/
public void removeListener(EventListener listener) {
public void removeListener(Object listener) {
Objects.requireNonNull(listener);
logger.log(Level.INFO, "Removing event listener {0}", listener.getClass().getName());
@ -207,7 +233,7 @@ public final class EventBus {
* @return all registered event listeners
* @since 0.0.1
*/
public Set<EventListener> getRegisteredListeners() {
public Set<Object> getRegisteredListeners() {
return Collections.unmodifiableSet(registeredListeners);
}
}

View File

@ -1,4 +1,4 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
/**
* This runtime exception is thrown when an event bus error occurs. This can

View File

@ -0,0 +1,137 @@
package dev.kske.eventbus.core;
import java.lang.reflect.*;
import dev.kske.eventbus.core.Event.USE_PARAMETER;
/**
* Internal representation of an event handling method.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see EventBus
*/
final class EventHandler implements Comparable<EventHandler> {
/**
* The priority assigned to every event handler without an explicitly defined priority.
*
* @since 1.0.0
* @see Priority
*/
public static final int DEFAULT_PRIORITY = 100;
private final Object listener;
private final Method method;
private final Class<?> eventType;
private final boolean useParameter;
private final boolean polymorphic;
private final int priority;
/**
* Constructs an event handler.
*
* @param listener the listener containing the handler
* @param method the handler method
* @param annotation the event annotation
* @throws EventBusException if the method or the annotation do not comply with the
* specification
* @since 0.0.1
*/
EventHandler(Object listener, Method method, Event annotation) throws EventBusException {
this.listener = listener;
this.method = method;
useParameter = annotation.value() == USE_PARAMETER.class;
// Check handler signature
if (method.getParameterCount() == 0 && useParameter)
throw new EventBusException(method + " does not define an event type!");
if (method.getParameterCount() == 1 && !useParameter)
throw new EventBusException(method + " defines an ambiguous event type!");
if (method.getParameterCount() > 1)
throw new EventBusException(method + " defines more than one parameter!");
// Determine handler properties
eventType = useParameter ? method.getParameterTypes()[0] : annotation.value();
polymorphic = method.isAnnotationPresent(Polymorphic.class);
priority = method.isAnnotationPresent(Priority.class)
? method.getAnnotation(Priority.class).value()
: DEFAULT_PRIORITY;
// Allow access if the method is non-public
method.setAccessible(true);
}
/**
* Compares this to another event handler based on priority. In case of equal priority a
* non-zero value based on hash codes is returned.
* <p>
* This is used to retrieve event handlers in descending order of priority from a tree set.
*
* @since 0.0.1
*/
@Override
public int compareTo(EventHandler other) {
int priority = other.priority - this.priority;
if (priority == 0)
priority = listener.hashCode() - other.listener.hashCode();
return priority == 0 ? hashCode() - other.hashCode() : priority;
}
@Override
public String toString() {
return String.format(
"EventHandler[method=%s, eventType=%s, useParameter=%b, polymorphic=%b, priority=%d]",
method, eventType, useParameter, polymorphic, priority);
}
/**
* Executes the event handler.
*
* @param event the event used as the method parameter
* @throws EventBusException if the event handler isn't accessible or has an invalid
* signature
* @throws InvocationTargetException if the handler throws an exception
* @since 0.0.1
*/
void execute(Object event) throws EventBusException, InvocationTargetException {
try {
if (useParameter)
method.invoke(listener, event);
else
method.invoke(listener);
} catch (IllegalArgumentException e) {
throw new EventBusException("Event handler rejected target / argument!", e);
} catch (IllegalAccessException e) {
throw new EventBusException("Event handler is not accessible!", e);
}
}
/**
* @return the listener containing this handler
* @since 0.0.1
*/
Object getListener() { return listener; }
/**
* @return the event type this handler listens for
* @since 0.0.3
*/
Class<?> getEventType() { return eventType; }
/**
* @return the priority of this handler
* @since 0.0.1
* @see Priority
*/
int getPriority() { return priority; }
/**
* @return whether this handler is polymorphic
* @since 1.0.0
* @see Polymorphic
*/
boolean isPolymorphic() { return polymorphic; }
}

View File

@ -0,0 +1,47 @@
package dev.kske.eventbus.core;
/**
* Wraps an event that was dispatched but caused an exception in one of its handlers.
* <p>
* Handling exception events is useful as it allows the creation of a centralized exception handling
* mechanism for unexpected exceptions.
*
* @author Kai S. K. Engelbart
* @since 1.1.0
*/
public final class ExceptionEvent {
private final EventBus eventBus;
private final Object event;
private final Throwable cause;
ExceptionEvent(EventBus eventBus, Object event, Throwable cause) {
this.eventBus = eventBus;
this.event = event;
this.cause = cause;
}
@Override
public String toString() {
return String.format("ExceptionEvent[eventBus=%s, event=%s, cause=%s]", eventBus, event,
cause);
}
/**
* @return the event bus that dispatched this event
* @since 1.1.0
*/
public EventBus getEventBus() { return eventBus; }
/**
* @return the event that could not be handled because of an exception
* @since 1.1.0
*/
public Object getEvent() { return event; }
/**
* @return the exception that was thrown while handling the event
* @since 1.1.0
*/
public Throwable getCause() { return cause; }
}

View File

@ -0,0 +1,20 @@
package dev.kske.eventbus.core;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.*;
/**
* Allows an event handler to receive events that are subtypes of the declared event type.
* <p>
* This is useful when defining an event handler for an interface or an abstract class.
*
* @author Kai S. K. Engelbart
* @since 1.0.0
* @see Event
*/
@Documented
@Retention(RUNTIME)
@Target(METHOD)
public @interface Polymorphic {}

View File

@ -0,0 +1,30 @@
package dev.kske.eventbus.core;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.*;
/**
* Defines the priority of an event handler. Handlers are executed in descending order of their
* priority.
* <p>
* Handlers without this annotation have the default priority of 100.
* <p>
* The execution order of handlers with the same priority is undefined.
*
* @author Kai S. K. Engelbart
* @since 1.0.0
* @see Event
*/
@Documented
@Retention(RUNTIME)
@Target(METHOD)
public @interface Priority {
/**
* @return the priority of the event handler
* @since 1.0.0
*/
int value();
}

View File

@ -0,0 +1,9 @@
/**
* Contains the public API and implementation of the Event Bus library.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see dev.kske.eventbus.core.Event
* @see dev.kske.eventbus.core.EventBus
*/
package dev.kske.eventbus.core;

View File

@ -0,0 +1,12 @@
/**
* Contains the public API and implementation of the Event Bus library.
*
* @author Kai S. K. Engelbart
* @since 0.0.3
* @see dev.kske.eventbus.core.Event
* @see dev.kske.eventbus.core.EventBus
*/
module dev.kske.eventbus.core {
exports dev.kske.eventbus.core;
}

View File

@ -1,4 +1,4 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
import static org.junit.jupiter.api.Assertions.assertEquals;
@ -11,7 +11,7 @@ import org.junit.jupiter.api.*;
* @author Leon Hofmeister
* @since 0.1.0
*/
class CancelTest implements EventListener {
class CancelTest {
EventBus bus;
int hits;
@ -39,13 +39,15 @@ class CancelTest implements EventListener {
assertEquals(1, hits);
}
@Event(eventType = SimpleEvent.class, priority = 100)
@Event(SimpleEvent.class)
@Priority(100)
void onSimpleFirst() {
++hits;
bus.cancel();
}
@Event(eventType = SimpleEvent.class, priority = 50)
@Event(SimpleEvent.class)
@Priority(50)
void onSimpleSecond() {
++hits;
}

View File

@ -0,0 +1,49 @@
package dev.kske.eventbus.core;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
/**
* Tests the dispatching of a dead event if an event could not be delivered.
*
* @author Kai S. K. Engelbart
* @since 1.1.0
*/
class DeadTest {
EventBus bus = new EventBus();
String event = "This event has no handler";
boolean deadEventHandled;
/**
* Tests dead event delivery.
*
* @since 1.1.0
*/
@Test
void testDeadEvent() {
bus.registerListener(this);
bus.dispatch(event);
assertTrue(deadEventHandled);
bus.removeListener(this);
}
/**
* Tests how the event bus reacts to an unhandled dead event. This should not lead to an
* exception or an endless recursion and should be logged instead.
*
* @since 1.1.0
*/
@Test
void testUnhandledDeadEvent() {
bus.dispatch(event);
}
@Event
void onDeadEvent(DeadEvent deadEvent) {
assertEquals(bus, deadEvent.getEventBus());
assertEquals(event, deadEvent.getEvent());
deadEventHandled = true;
}
}

View File

@ -1,4 +1,4 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
import static org.junit.jupiter.api.Assertions.*;
@ -10,7 +10,7 @@ import org.junit.jupiter.api.*;
* @author Kai S. K. Engelbart
* @since 0.0.1
*/
class DispatchTest implements EventListener {
class DispatchTest {
EventBus bus;
static int hits;
@ -27,8 +27,8 @@ class DispatchTest implements EventListener {
}
/**
* Tests {@link EventBus#dispatch(IEvent)} with multiple handler priorities, a subtype handler
* and a static handler.
* Tests {@link EventBus#dispatch(Object)} with multiple handler priorities, a polymorphic
* handler and a static handler.
*
* @since 0.0.1
*/
@ -38,19 +38,22 @@ class DispatchTest implements EventListener {
bus.dispatch(new SimpleEvent());
}
@Event(eventType = SimpleEvent.class, includeSubtypes = true, priority = 200)
@Event(SimpleEvent.class)
@Priority(200)
@Polymorphic
void onSimpleEventFirst() {
++hits;
assertTrue(hits == 1 || hits == 2);
}
@Event(eventType = SimpleEvent.class, priority = 150)
@Event(SimpleEvent.class)
@Priority(150)
static void onSimpleEventSecond() {
++hits;
assertEquals(3, hits);
}
@Event(priority = 100)
@Event
void onSimpleEventThird(SimpleEvent event) {
++hits;
assertEquals(4, hits);

View File

@ -0,0 +1,62 @@
package dev.kske.eventbus.core;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
/**
* Tests the dispatching of an exception event if an event handler threw an exception.
*
* @author Kai S. K. Engelbart
* @since 1.1.0
*/
class ExceptionTest {
EventBus bus = new EventBus();
String event = "This event will cause an exception";
RuntimeException exception = new RuntimeException("I failed");
boolean exceptionEventHandled;
/**
* Tests exception event delivery.
*
* @since 1.1.0
*/
@Test
void testExceptionEvent() {
bus.registerListener(this);
bus.registerListener(new ExceptionListener());
bus.dispatch(event);
assertTrue(exceptionEventHandled);
bus.clearListeners();
}
/**
* Tests how the event bus reacts to an unhandled exception event. This should not lead to an
* exception or an endless recursion and should be logged instead.
*
* @since 1.1.0
*/
@Test
void testUnhandledExceptionEvent() {
bus.registerListener(this);
bus.dispatch(event);
bus.removeListener(this);
}
@Event(String.class)
void onString() {
throw exception;
}
class ExceptionListener {
@Event
void onExceptionEvent(ExceptionEvent exceptionEvent) {
assertEquals(bus, exceptionEvent.getEventBus());
assertEquals(event, exceptionEvent.getEvent());
assertEquals(exception, exceptionEvent.getCause());
exceptionEventHandled = true;
}
}
}

View File

@ -1,4 +1,4 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
/**
* A simple event for testing purposes.
@ -6,4 +6,4 @@ package dev.kske.eventbus;
* @author Kai S. K. Engelbart
* @since 0.0.1
*/
public class SimpleEvent implements IEvent {}
public class SimpleEvent {}

View File

@ -1,4 +1,4 @@
package dev.kske.eventbus;
package dev.kske.eventbus.core;
/**
* Subclass of {@link SimpleEvent} for testing purposes.

32
event-bus-proc/.classpath Normal file
View File

@ -0,0 +1,32 @@
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="src" output="target/classes" path="src/main/java">
<attributes>
<attribute name="optional" value="true"/>
<attribute name="maven.pomderived" value="true"/>
</attributes>
</classpathentry>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.ui.launcher.StandardVMType/JavaSE-11">
<attributes>
<attribute name="maven.pomderived" value="true"/>
</attributes>
</classpathentry>
<classpathentry kind="con" path="org.eclipse.m2e.MAVEN2_CLASSPATH_CONTAINER">
<attributes>
<attribute name="maven.pomderived" value="true"/>
</attributes>
</classpathentry>
<classpathentry kind="src" output="target/test-classes" path="home/kske/git/event-bus/event-bus-ap">
<attributes>
<attribute name="optional" value="true"/>
<attribute name="maven.pomderived" value="true"/>
<attribute name="test" value="true"/>
</attributes>
</classpathentry>
<classpathentry excluding="**" kind="src" output="target/classes" path="src/main/resources">
<attributes>
<attribute name="maven.pomderived" value="true"/>
</attributes>
</classpathentry>
<classpathentry kind="output" path="target/classes"/>
</classpath>

23
event-bus-proc/.project Normal file
View File

@ -0,0 +1,23 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>event-bus-proc</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.m2e.core.maven2Builder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>org.eclipse.m2e.core.maven2Nature</nature>
</natures>
</projectDescription>

75
event-bus-proc/pom.xml Normal file
View File

@ -0,0 +1,75 @@
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>event-bus-proc</artifactId>
<name>Event Bus Annotation Processor</name>
<description>Annotation processor checking for errors related to the @Event annotation from Event Bus.</description>
<parent>
<groupId>dev.kske</groupId>
<artifactId>event-bus</artifactId>
<version>1.0.0</version>
</parent>
<dependencies>
<dependency>
<groupId>dev.kske</groupId>
<artifactId>event-bus-core</artifactId>
<version>${project.version}</version>
</dependency>
</dependencies>
<build>
<!-- Disable test folder -->
<testSourceDirectory />
<plugins>
<!-- Prevent annotation processing error during compilation -->
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgument>-proc:none</compilerArgument>
</configuration>
</plugin>
<!-- Include event-bus-core classes into JAR -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<minimizeJar>true</minimizeJar>
<filters>
<filter>
<artifact>dev.kske:event-bus-core</artifact>
<excludes>
<exclude>META-INF/MANIFEST.MF</exclude>
</excludes>
</filter>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>module-info.class</exclude>
<exclude>META-INF/maven/**</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

View File

@ -0,0 +1,119 @@
package dev.kske.eventbus.proc;
import java.util.Set;
import javax.annotation.processing.*;
import javax.lang.model.SourceVersion;
import javax.lang.model.element.*;
import javax.lang.model.type.*;
import javax.tools.Diagnostic.Kind;
import dev.kske.eventbus.core.*;
/**
* This annotation processor checks event handlers for common mistakes which can only be detected
* during runtime otherwise.
*
* @author Kai S. K. Engelbart
* @since 1.0.0
*/
@SupportedAnnotationTypes("dev.kske.eventbus.core.Event")
@SupportedSourceVersion(SourceVersion.RELEASE_11)
public class EventProcessor extends AbstractProcessor {
@SuppressWarnings("unchecked")
@Override
public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
if (!roundEnv.errorRaised() && !roundEnv.processingOver())
processRound(
(Set<ExecutableElement>) roundEnv.getElementsAnnotatedWith(Event.class));
// Do not claim the processed annotations
return false;
}
private void processRound(Set<ExecutableElement> eventHandlers) {
for (ExecutableElement eventHandler : eventHandlers) {
Event eventAnnotation = eventHandler.getAnnotation(Event.class);
TypeMirror eventType;
// Determine the event type and how it is defined
boolean useParameter;
try {
eventAnnotation.value();
throw new EventBusException(
"Could not determine event type of handler " + eventHandler);
} catch (MirroredTypeException e) {
// Task failed successfully
eventType = e.getTypeMirror();
useParameter = processingEnv.getTypeUtils().isSameType(eventType,
getTypeMirror(Event.USE_PARAMETER.class));
}
// Check handler signature
boolean pass = false;
if (useParameter && eventHandler.getParameters().size() == 0)
error(eventHandler, "The method or the annotation must define the event type");
else if (!useParameter && eventHandler.getParameters().size() == 1)
error(eventHandler,
"Either the method or the annotation must define the event type");
else if (eventHandler.getParameters().size() > 1)
error(eventHandler, "Method must not have more than one parameter");
else
pass = true;
// Warn the user about unused return values
if (useParameter && eventHandler.getReturnType().getKind() != TypeKind.VOID)
warning(eventHandler, "Unused return value");
// Abort checking if the handler signature is incorrect
if (!pass)
continue;
// Additional checks if parameter is used
if (useParameter) {
VariableElement paramElement = eventHandler.getParameters().get(0);
eventType = paramElement.asType();
// Check if parameter is object
// Abort checking otherwise
if (eventType.getKind() != TypeKind.DECLARED) {
error(paramElement, "Event must be an object");
continue;
}
}
// Detect missing or useless @Polymorphic
boolean polymorphic = eventHandler.getAnnotation(Polymorphic.class) != null;
Element eventElement = ((DeclaredType) eventType).asElement();
// Check for handlers for abstract types that aren't polymorphic
if (!polymorphic && (eventElement.getKind() == ElementKind.INTERFACE
|| eventElement.getModifiers().contains(Modifier.ABSTRACT)))
warning(eventHandler,
"Parameter should be instantiable or handler should use @Polymorphic");
// Check for handlers for final types that are polymorphic
else if (polymorphic && eventElement.getModifiers().contains(Modifier.FINAL))
warning(eventHandler,
"@Polymorphic should be removed as parameter cannot be subclassed");
}
}
private TypeMirror getTypeMirror(Class<?> clazz) {
return getTypeElement(clazz).asType();
}
private TypeElement getTypeElement(Class<?> clazz) {
return processingEnv.getElementUtils().getTypeElement(clazz.getCanonicalName());
}
private void warning(Element e, String msg, Object... args) {
processingEnv.getMessager().printMessage(Kind.WARNING, String.format(msg, args), e);
}
private void error(Element e, String msg, Object... args) {
processingEnv.getMessager().printMessage(Kind.ERROR, String.format(msg, args), e);
}
}

View File

@ -0,0 +1,7 @@
/**
* Contains the Event Bus annotation processor.
*
* @author Kai S. K. Engelbart
* @since 1.0.0
*/
package dev.kske.eventbus.proc;

View File

@ -0,0 +1,12 @@
/**
* Contains an annotation processor for checking for errors related to the
* {@link dev.kske.eventbus.core.Event} annotation from Event Bus.
*
* @author Kai S. K. Engelbart
* @since 1.0.0
*/
module dev.kske.eventbus.ap {
requires java.compiler;
requires dev.kske.eventbus.core;
}

View File

@ -0,0 +1 @@
dev.kske.eventbus.proc.EventProcessor

63
pom.xml
View File

@ -5,16 +5,22 @@
<groupId>dev.kske</groupId>
<artifactId>event-bus</artifactId>
<version>0.1.0</version>
<version>1.0.0</version>
<packaging>pom</packaging>
<name>Event Bus</name>
<description>An event handling framework for Java utilizing annotations.</description>
<url>https://git.kske.dev/zdm/event-bus</url>
<url>https://git.kske.dev/kske/event-bus</url>
<modules>
<module>event-bus-core</module>
<module>event-bus-proc</module>
</modules>
<licenses>
<license>
<name>MIT License</name>
<url>http://www.opensource.org/licenses/mit-license.php</url>
<name>GNU General Public License Version 3</name>
<url>http://www.gnu.org/licenses/gpl.txt</url>
</license>
</licenses>
@ -33,8 +39,9 @@
</developers>
<scm>
<connection>scm:git:https://git.kske.dev/zdm/event-bus.git</connection>
<developerConnection>scm:git:ssh:git@git.kske.dev:zdm/event-bus.git</developerConnection>
<connection>scm:git:https://git.kske.dev/kske/event-bus.git</connection>
<developerConnection>scm:git:ssh://git@git.kske.dev:420/kske/event-bus.git</developerConnection>
<url>https://git.kske.dev/kske/event-bus</url>
</scm>
<properties>
@ -44,10 +51,21 @@
<maven.compiler.target>11</maven.compiler.target>
</properties>
<!-- Configure deployment to OSSRH -->
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
<repository>
<id>ossrh</id>
<url>https://oss.sonatype.org/service/local/staging/deploy/maven2/</url>
</repository>
</distributionManagement>
<build>
<!-- Disable resource folders -->
<resources />
<!-- Disable test resource folder -->
<testResources />
<plugins>
@ -59,7 +77,7 @@
<version>3.8.1</version>
</plugin>
<!-- Attach sources and Javadoc to JAR -->
<!-- Attach sources to JAR -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
@ -73,6 +91,8 @@
</execution>
</executions>
</plugin>
<!-- Attach Javadoc to JAR -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
@ -87,15 +107,22 @@
</executions>
</plugin>
<!-- GPG sign JAR -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>1.6</version>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.6.2</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

View File

@ -1,67 +0,0 @@
package dev.kske.eventbus;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.*;
/**
* Indicates that a method is an event handler. To be successfully used as such, the method has to
* comply with the following specifications:
* <ul>
* <li>Declared inside a class that implements {@link EventListener}</li>
* <li>Specifying an event type by either
* <ul>
* <li>Declaring one parameter of a type that implements {@link IEvent}</li>
* <li>Defining the class of the event using the {@link Event#eventType()} value</li>
* </ul>
* </li>
* <li>Return type of {@code void}</li>
* </ul>
*
* @author Kai S. K. Engelbart
* @since 0.0.1
*/
@Documented
@Retention(RUNTIME)
@Target(METHOD)
public @interface Event {
/**
* Defines the priority of the event handler. Handlers are executed in descending order of their
* priority.
* <p>
* The execution order of handlers with the same priority is undefined.
*
* @return the priority of the event handler
* @since 0.0.1
*/
int priority() default 100;
/**
* Defines whether instances of subtypes of the event type are dispatched to the event handler.
*
* @return whether the event handler includes subtypes
* @since 0.0.4
*/
boolean includeSubtypes() default false;
/**
* Defines the event type the handler listens to. If this value is set, the handler is not
* allowed to declare parameters.
* <p>
* This is useful when the event handler does not utilize the event instance.
*
* @return the event type accepted by the handler
* @since 0.0.3
*/
Class<? extends IEvent> eventType() default USE_PARAMETER.class;
/**
* Signifies that the event type the handler listens to is determined by the type of its only
* parameter.
*
* @since 0.0.3
*/
static final class USE_PARAMETER implements IEvent {}
}

View File

@ -1,136 +0,0 @@
package dev.kske.eventbus;
import java.lang.reflect.*;
import dev.kske.eventbus.Event.USE_PARAMETER;
/**
* Internal representation of an event handling method.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see EventBus
*/
final class EventHandler implements Comparable<EventHandler> {
private final EventListener listener;
private final Method method;
private final Event annotation;
private final Class<? extends IEvent> eventType;
/**
* Constructs an event handler.
*
* @param listener the listener containing the handler
* @param method the handler method
* @param annotation the event annotation
* @throws EventBusException if the method or the annotation do not comply with the
* specification
* @since 0.0.1
*/
@SuppressWarnings("unchecked")
EventHandler(EventListener listener, Method method, Event annotation) throws EventBusException {
this.listener = listener;
this.method = method;
this.annotation = annotation;
// Check for correct method signature and return type
if (method.getParameterCount() == 0 && annotation.eventType().equals(USE_PARAMETER.class))
throw new EventBusException(method + " does not define an event type!");
if (method.getParameterCount() == 1 && !annotation.eventType().equals(USE_PARAMETER.class))
throw new EventBusException(method + " defines an ambiguous event type!");
if (method.getParameterCount() > 1)
throw new EventBusException(method + " defines more than one parameter!");
if (!method.getReturnType().equals(void.class))
throw new EventBusException(method + " does not have a return type of void!");
// Determine the event type
Class<? extends IEvent> eventType = annotation.eventType();
if (eventType.equals(USE_PARAMETER.class)) {
var param = method.getParameterTypes()[0];
if (!IEvent.class.isAssignableFrom(param))
throw new EventBusException(param + " is not of type IEvent!");
eventType = (Class<? extends IEvent>) param;
}
this.eventType = eventType;
// Allow access if the method is non-public
method.setAccessible(true);
}
/**
* Compares this to another event handler based on {@link Event#priority()}. In case of equal
* priority a non-zero value based on hash codes is returned.
* <p>
* This is used to retrieve event handlers in the correct order from a tree set.
*
* @since 0.0.1
*/
@Override
public int compareTo(EventHandler other) {
int priority = other.annotation.priority() - annotation.priority();
if (priority == 0)
priority = listener.hashCode() - other.listener.hashCode();
return priority == 0 ? hashCode() - other.hashCode() : priority;
}
@Override
public String toString() {
return String.format("EventHandler[method=%s, annotation=%s]", method, annotation);
}
/**
* Executes the event handler.
*
* @param event the event used as the method parameter
* @throws EventBusException if the handler throws an exception
* @since 0.0.1
*/
void execute(IEvent event) throws EventBusException {
try {
if (annotation.eventType().equals(USE_PARAMETER.class))
method.invoke(listener, event);
else
method.invoke(listener);
} catch (
IllegalAccessException
| IllegalArgumentException
| InvocationTargetException e
) {
throw new EventBusException("Failed to invoke event handler!", e);
}
}
/**
* @return the listener containing this handler
* @since 0.0.1
*/
EventListener getListener() { return listener; }
/**
* @return the event annotation
* @since 0.0.1
*/
Event getAnnotation() { return annotation; }
/**
* @return the priority of the event annotation
* @since 0.0.1
*/
int getPriority() { return annotation.priority(); }
/**
* @return whether this handler includes subtypes
* @since 0.0.4
*/
boolean includeSubtypes() { return annotation.includeSubtypes(); }
/**
* @return the event type this handler listens to
* @since 0.0.3
*/
Class<? extends IEvent> getEventType() { return eventType; }
}

View File

@ -1,12 +0,0 @@
package dev.kske.eventbus;
/**
* Marker interface for event listeners. Event listeners can contain event handling methods to which
* events can be dispatched.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see Event
* @see EventBus
*/
public interface EventListener {}

View File

@ -1,12 +0,0 @@
package dev.kske.eventbus;
/**
* Marker interface for event objects. Event objects can be used as event handler parameters and
* thus can be dispatched to the event bus.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see Event
* @see EventBus
*/
public interface IEvent {}

View File

@ -1,9 +0,0 @@
/**
* Contains the public API and implementation of the event bus library.
*
* @author Kai S. K. Engelbart
* @since 0.0.1
* @see dev.kske.eventbus.Event
* @see dev.kske.eventbus.EventBus
*/
package dev.kske.eventbus;

View File

@ -1,12 +0,0 @@
/**
* Contains the public API and implementation of the event bus library.
*
* @author Kai S. K. Engelbart
* @since 0.0.3
* @see dev.kske.eventbus.Event
* @see dev.kske.eventbus.EventBus
*/
module dev.kske.eventbus {
exports dev.kske.eventbus;
}